Generating Weather Comments from Meteorological Simulations
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Precipitation Air temperature Cloud cover Today, the sky will easily become partly cloudy, but it will
. . & % J‘.‘:&‘& m Dataset Ref. - - - become sunny. Since the sun this summer is intense, please take

W We propose a model for automatically generating S Statistics of precautions against the heat and ultraviolet rays

weather comments from meteorological simulations. g + Weather comments weather comments

; *  Numerical forecast maps Today (Monday), it will be sunny then gradually become cloudy.
B Three characteristic problems of this task. 4 «  Weather observation data Train 28,555 (2) 20 30 30 Since there is a chance of rain in the afternoon, it will be a good

idea to take a folding umbrella when you go out.

(1) How can we consider the changes in numerical values for Delivery time: 05:51 a.m. on 06 April, Tokyo ® Evaluation metrics Ve | e y )

. . s ” . Today (Monday), the sky will become cloudy but will become
various physical quantities * ] ) Today patches of blue sky will appear, but the sky «  Word-based metrics Vst e (4) 28 28 30 sunny. Since it will be hot and humid, please remember to take
(2) Weather c_omments should be dependent on delivery time and will become cloudy and it will gradually start to rain . BLEU, ROUGE precautions against heatstroke.
area information. ) ) . in the 6’!/6’/'7/7'75? P/easej [?r/'ng an umbrella when you go . Content-based metrics
(3) Weather comments should provide useful information for users. out, even if it's not raining. «  Precision/Recall/F1 of weather labels, extracted from generated texts Results of Human evaluation

+  Human evaluation (w/ five evaluators) Noaa Noaaa -

« Informativeness, Consistency, Grammaticality (1/2/3) Label [ . C°$( éra_ Info. (;)(:E( ém. cfs:s

Proposed Methods B Results SUNNY 192 291 291 210 282 288 26
RAIN 202 293 292 213 288 290 26

« In the results of automatic evaluation, models (3) and (4) significantly =~ cLoupy 199 293 294 212 283 289 19

. : ”r 188 295 292 195 291 294 13
1) Encoding numerical for m i - ) o SNOW
(1) Encoding numerical forecast maps (2) Introducing meta-data (3) Predicting weather labels improved F1 scores for the sunny and snow labels by around 5% in  —Go——Tor 92 297 210 286 200 20

comparison to the baselines.

B Since numerical forecast maps are g \yeather comments contain M Consumers are primarily interested in Effect of Meta-dat
g?nTepnossiiﬁal g;ta athesfssukezgi beOfseethg; expressions that depend on their weather information such as sunny +  Model (5) significantly improved the correctness of each weather label since ect ot leta-data
“ideo captioning:’ delivery time and date. and rain. it can use the oracle labels, but the improvement in BLEU and ROUGE scores Expression Model 4) wioMeta A
' ) : . P was limited. 4H (Toda 993 973 420
0 W wee eiter & 300 67 RILP 6 o camue m  We use delivery date and time of B We need to explicitly perform “content EZ%EI Esz{fr)mw) 951 oLl Lw
X weather comments and area selection” to help the model describe . . f [ H (Monday) 293 0.0 +29.3
the numeric features of forecast maps. e ordar to eenerate such Uotil intorrmation. In the results.of human evaluation, model (4),. which epr|C|t.Iy performs % (et b 00 4355
g
) ) S content selection outperformed model (2), which does not, in terms of # (Spring) 14.0 24 +11.6
U \s/\éfiezlzgtause Bi-RNN to capture time- ' B However, it is hard to find content informativeness. & (Summer) 19.1 124 467
o i i _ . . BLEU 132 12.7 0.5
plans from the complicated input-data. Results of automatic evaluation H
;\lumerical Forecast Magps _ . . Model __ Components Word Overlap SUNNY RAIN CLOUDY SNOW Results of weather label prediction
Sequence of numerical L 22 g2 i How can we define “content plans™? Enc. Weather CL BLEU ROUGE P% R% Fi% P% R% Fi% P% R% Fi% P% R% Fi% P R p—
forecast maps (10 types) . . . +| Observationdata ~ Metadata ) (1) CNN — — 127 428 835 676 747 728 836 778 585 59.8 59.0 752 50.1 60.2 !
s Y v a—1 a G ™ oMy  Mim Today patches of blue sky will appear, (@ MLP - - 130 435 832 684 749 746 835 788 59.8 603 599 757 533 623 SUNNY 79.7 84.9 82.1
EEEREECEEE —JI 7 T 4 4 Vool i but the sky will become cloudy and it (3) MLP Pred. — 129 438 8L0 785 79.7 786 80.0 793 625 559 589 759 60.4 672 RAIN 799 805 80.2
N ¥ W EEE IO ENANEERIE ) () (- N will gradually start to rain in the evening. (@) MLP Pred. v 132 439 810 784 79.7 766 84.1 802 60.6 59.3 598 777 585 666  CLOUDY 61.5 625 61.6
I EERE EEE ‘_F " Please bring an umbrella when you go (5) MLP Orac. v 146 455 949 845 894 844 929 884 847 856 851 913 638 75.1 SNow 739 671 703
§3 .'.- i = 3 out, even if it's not raining.
gt Concat
3 HHHH HH - e abel * o ® i
EErEEEEEEE T T Weather Label extraction oy Coudy R Conclusion
° I Lrai l l
Type of physical quantites sunny  ‘rain cloudy  “snow Example of clue words ;
Precipitation Wo Word Toa Clue words B We proposed a data-to-text model and incorporated three types of encoders for forecast maps,
e , Senerator SUNNY BT Gy, EL2E U (sunlight), 572 (blue sky) observation data, and meta-data into the model.
‘,"—’ i nd E j" _— RAIN  © (rain), KF¥ (heavy rain), iZ [ (shower) . i i . .
Extract mumerical /T T cLouny 2D (cloudy), & (cloudy), & (cloud) B We introduced weather labels representing the content of weather information to improve the
xtract numerical maps w w, Wi SNOW  F (snow), KE (blizzard), INE (light snowfall) . . .
for a specific area 3 4 s correctness of information in generated comments.




